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The next series of the JLR’s thematic review articles
concerns systems-level approaches to cardiovascular and
metabolic traits. “Systems-level” means a kind of biologic
analysis that looks beyond individual genes or proteins or
lipids to the ensemble of multiple elements of a system.
Some examples of biologic systems are the transcripts in a
cell (a “transcriptome”), the proteins of an organelle (a
“proteome”), and the metabolites in a liver (a “meta-
bolome”). Systems-level approaches have been stimulated
by the genome project, by the development of experi-
mental techniques that can simultaneously interrogate
many elements of a system (such as expression micro-
arrays), and by advances in computational methods for
analyzing large data sets (1).

A key concept in systems biology is that of “emergent
properties,” important features of biologic systems that
can best be identified by examining the system as a whole.
A simple example of an emergent property is illustrated in
Fig. 1. In this experiment, the levels of the transcripts in
livers of mice from an intercross between two common
inbred strains were determined using expression micro-
arrays. The entire data set was then tested to identify
transcripts whose levels correlate with one another. One of
many such sets of highly correlated transcripts from this
experiment is the set of cholesterol biosynthetic enzymes,
as shown. In this case, the relationships of these enzymes
were already known through the painstaking, decades-
long studies of many biochemists. However, even if this
information was not known, our global experiment would
immediately group all of the enzymes together, implying a
functional relationship. Jim Weiss’s review in this series
will discuss a particularly striking emergent property in
metabolism. Thus, both glycolysis and oxidative phos-
phorylation are capable, under the right conditions, of
developing self-sustained oscillations. Such oscillations are
observed only when the individual enzymes are coupled
into a “network” with other metabolic enzymes to create
positive and negative feedback loops. Clearly, in this ex-

ample, studies of the individual components of the system
would not provide mechanistic understanding of the over-
all dynamics of the system.

A particularly important goal of systems biology is to
construct “networks,” sets of genes or proteins or meta-
bolites that act in concert in a common biologic process
(2). These networks can be experimentally identified by
classical methods (e.g., the pathways of cholesterol ho-
meostasis), but systems-level approaches such as expres-
sion arrays, chIP-chip studies, and whole-genome yeast
two-hybrid experiments can efficiently test millions of pos-
sible interactions. Topologically, networks consist of ele-
ments (termed “nodes” in network nomenclature) that
exhibit functional connections (“edges”) (Fig. 2). The
connections can be identified using coregulation (as in
Fig. 1), physical interactions (as in protein complexes), or
metabolic relationships (e.g., the intermediates in glycoly-
sis). “Undirected” networks are simply nodes connected by
edges, with no causal direction, whereas “directed” net-
works have edges with a given direction (Fig. 2). An im-
portant emergent property observed for most biologic
networks is scale-free topology, in which some nodes have
many edges (these nodes are termed “hubs”) but most
nodes have few edges.

A convenient way of organizing the data sets generated
using various global platforms is as a series of orthogonal
stages, ordered according to the sequential stages of gene
expression (genome, transcriptome, proteome) followed
by the metabolome (the set of metabolites) and the phe-
nome (the set of physiologic or disease parameters of in-
terest) (Fig. 3). Each of these data sets can be used to
construct networks or derive other useful information, but
none alone tells the whole story. For example, analyses of
the transcriptome will miss crucial aspects of protein re-
alization and cellular signaling. Thus, the intersection of
these orthogonal data sets is an important challenge. One
particularly useful application of such genomic integra-
tion is for the identification of genes and pathways con-
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tributing to common diseases. Bayesian inference is a
particularly useful statistical approach for the integration
of information from heterogeneous data sets, assigning a
probability to the predictions rather than only a binary
classification (3, 4).

How important will systems-level approaches be? For
well over 50 years, since chemists developed the tools for
studies of biological molecules, research in biology has fo-
cused on individual genes, painstakingly connecting them
to other genes and to functions. Almost the entire body of
mechanistic understanding of cellular and developmental
biology has been built up in this reductionistic way. Not
surprisingly, many biologists are skeptical about the new
systems biology that seeks a global view of all of the ele-
ments and their interactions and their responses to envi-
ronmental changes. The goal of this series of reviews is to
illustrate how systems-based approaches can complement
traditional approaches to the biology of lipids and diseases
involving lipids. The most elegant systems biology studies
to date have been in model organisms, such as bacteria,
yeast, Caenorhabditis elegans, and flies (5–7). However, a
number of studies involving various global data sets for
mammals (primarily mouse and human) (Table 1) have
already contributed importantly to our understanding of
metabolic and cardiovascular diseases.

Fig. 2. Integration of genome-wide data sets for the construction
of networks and the elucidation of disease mechanisms. Experi-
mental approaches such as gene expression microarrays (A) or
global yeast two-hybrid protein interaction experiments (B) can be
used to generate data for construction of networks. Such data can
be integrated with results from dynamic experiments, clinical data,
literature data, or genetic data (C–E). The resulting networks can
simply indicate connections, termed “undirected” networks (F), or
they can indicate the direction of the interactions, termed “directed”
networks (G). Ultimately, such modeling requires experimental vali-
dation in transgenic animals or tissue culture (H).

Fig. 1. Transcript levels of the enzymes of the cholesterol bio-
synthetic pathway are strongly correlated in an intercross between
two common strains of mouse. An F2 intercross between strain
C3H and C57BL/6J mice was constructed, and livers from the
mice were analyzed for transcript levels using microarrays. The
levels of the transcripts for each enzyme in the cholesterol biosyn-
thetic pathway (x axis) are plotted against the levels of the tran-
script for HMG-CoA reductase (y axis). Clearly, transcript levels
for all of the enzymes are highly correlated in both female (n 5

170; black circles) and male (n 5 170; red circles) progeny. This
finding illustrates the concept that functionally related genes tend
to exhibit coordinated regulation in response to various pertur-
bations, whether genetic (as in this example), environmental, or
developmental. These data were generated from a database pub-
lished by Wang and colleagues (2005), and I thank Susanna Wang
for help in preparing the figure (20).
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A particularly important goal of systems biology is to
identify genes involved in diseases. The genes underlying
approximately half of the Mendelian disorders listed in
McKusick’s Online Mendelian Inheritance in Man have
now been identified (3), but the search for genes and
pathways involved in common complex diseases, such as
the metabolic syndrome, diabetes, and cardiovascular dis-
eases, is only beginning. The first review of this series,
by Karen Reue and Laurent Vergnes (UCLA), deals with
the integration of genomic resources, particularly the ge-
nome sequences of human, mouse, and other model or-
ganisms, for the identification and functional analysis of
genes involved in lipid metabolism. This review outlines
the various genomic approaches to this problem, includ-

ing studies with model organisms, systematic gene modi-
fication projects, and comparative genomics. For example,
a number of new genes involved in lipid metabolism have
recently been identified based on sequence similarities
with known genes and their functions determined using
mice with gene modifications (8).

In the second article in the series, Andrew Watson
(UCLA) will review “lipidomics,” a systems-based study of
all lipids, the molecules with which they interact, and their
functions. Lipidomics can be considered a branch of met-
abolomics. Lipids, of course, play crucial structural roles
in biologic systems, but the appreciation of their key reg-
ulatory functions in inflammation and chronic diseases is
greatly expanding. For example, certain recently identi-
fied oxidation products of phospholipids appear to play a
key role in atherosclerosis (9), and one such oxidized lipid
was shown to significantly perturb the expression of.1,000
genes in human endothelial cells (10). It is noteworthy that
the National Institutes of Health has established a large col-
laborative effort, the LIPID MAPS consortium, to identify,
characterize, and quantitate all the lipids in specific cells.
This includes a bioinformatics focus to organize and inte-
grate the data, consisting of rapidly expanding lists of lipids
(presently over 8,000), lipid related proteins, and lipid re-
lated changes in the transcriptome (11, 12).

As discussed above, a major application of genome-wide
data sets will be to model networks. One important char-
acteristic of networks is “topology,” the overall architecture
of the interactions between nodes. A second is “dynamics,”
the temporal interactions involved in perturbations of the
network or the maintenance of homeostasis. Interaction
maps represent possible networks, but not all edges will be
present at the same time in a particular cell, just as edges
will differ between cell types and subcellular locations.
Studies in yeast, for example, have shown that environ-
mental responses involve multiple temporal stages and
surprisingly large-scale topological changes (13). An un-
derstanding of the dynamic nature of a network will thus

TABLE 1. Some global online data sets and resources for metabolic and cardiovascular disorders

“Omic” Space Online Resources and Databases

Phenome Genomics of Lipid-Associated Disorders Database, gold.tugraz.at/main.jsp
Diabetes Genome Anatomy Project, www.diabetesgenome.org
Online Mendelian Inheritance in Man, www.ncbi.nlm.nih.gov
Unified Medical Language System, umlsinfo.nlm.nih.gov
Mouse Genome Database, www.informatics.jax.org/
Rat Genome Database, rgd.new.edu/

Metabolome LIPID Metabolites and Pathway Strategy (Lipid Maps), www.lipidmaps.org/
Biological magnetic resonance database, www.brmb.wisc.edu/metabolomics/
Lipid Bank, lipidbank.jp/
European Nutrigenomics Organization, www.nugo.org/metabolomics/

Proteome Database of Interacting Proteins, dip.doe-mbi.ucla.edu/
Biomolecular Interaction Network Database, bind.ca/
Proteomes of Higher Eukaryotic Organisms, ebi.ac.uk/IPI/IPIhelp.html

Transcriptome Gene Expression Omnibus, www.ncbi.nlm.nih.gov/geo
miRNA Registry, www.sanger.ac.uk/software/rfan/mirna/

Genome UCSC, genome.ucsc.edu/
Ensembl, www.ensembl.org/
National Center for Biotechnology Information, www.ncbi.nlm.gov/genomes/
The SNP Consortium, snp.sshl.org/
Perlegen Mouse SNP Database, mouse.perlegen.com/mouse/download.html

Fig. 3. Genome-wide data sets and online resources and databases
used in systems-based approaches. Each data set can be viewed as a
stage that is orthogonal to the others. A major challenge of systems
biology is to intersect these data sets. The lines between the stages
illustrate the effects of a hypothetical genetic perturbation. PET, po-
sitron emission tomography; SNP, single nucleotide polymorphism.
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require comprehensive time-course data sets with tools for
quantifying kinetic parameters such as concentrations,
interaction strengths, and fluxes (14) (Fig. 2). In the third
review, Jim Weiss (UCLA) will review studies of the dy-
namics of cardiac and smooth muscle metabolism (15).
These studies illustrate how systems-level approaches can
reveal emergent properties of a system that lead to test-
able hypotheses. Thus, studies of cardiac metabolism in-
dicate that, in a normal state, energy supply and demand are
closely balanced, but under stress (as in postischemic in-
jury), this coordination can be lost, leading to cell-wide
oscillations in ATP levels.

There have been a number of successes in the iden-
tification of genes underlying common diseases, and there
will likely be hundreds of additional genes identified in
the next few years. But how will this information be used in
the identification of targets and the development of safe,
efficient treatments? In the fourth review, Eric Schadt
(Merck) will discuss how systems-based approaches can be
used to define targets for therapeutic intervention (16).
He will first describe how directed networks can be con-
structed using data from molecular profiling, genotyping,
and clinical studies. He will then discuss how such net-
works can be intersected with orthogonal experimental
data, such as data from transgenic mice or small inter-
fering RNA experiments in cultured cells, to identify can-
didates for drug intervention.

Proteomics involves the systematic analysis of proteins
and their interactions. Although the technologies for ex-
amining proteins on a genome-wide basis are less powerful
than the microarray technologies for RNA expression,
they are already providing important complementary in-
formation. Peipei Ping and Thomas Drake (UCLA) will re-
view the various levels of proteomic investigation as they
apply to metabolic and vascular diseases, including organ-
elle topography, protein-protein interaction networks, pro-
tein interactions with DNA and lipids, protein processing,
and disease marker discovery. One important application
of proteomics is the identification of diseasemarkers (17, 18).

In the final review, Erwin Kurland (State University of
New York at Stony Brook) will focus on metabolomics, the
systematic profiling of metabolites using nuclear magnetic
resonance, tandem mass spectrometry, calorimetry, and
stable isotopes. Topics relevant to lipid metabolism, such
as energy partitioning and metabolite flux between tissues,
will be described. This reviewwill emphasize howmetabolo-
mics can help clarify very complex disorders such as dia-
betes that involve multiple tissues [for example, (19)].

The author expresses his gratitude to the investigators men-
tioned in this article for participating in this project. They are
all leaders in their respective areas of research, and the author
is confident that their reviews will generate interest in this
promising new approach in biology.
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